9x+27=(x^2-6x)+(2x-3)

Simple and best practice solution for 9x+27=(x^2-6x)+(2x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x+27=(x^2-6x)+(2x-3) equation:



9x+27=(x^2-6x)+(2x-3)
We move all terms to the left:
9x+27-((x^2-6x)+(2x-3))=0
We calculate terms in parentheses: -((x^2-6x)+(2x-3)), so:
(x^2-6x)+(2x-3)
We get rid of parentheses
x^2-6x+2x-3
We add all the numbers together, and all the variables
x^2-4x-3
Back to the equation:
-(x^2-4x-3)
We get rid of parentheses
-x^2+9x+4x+3+27=0
We add all the numbers together, and all the variables
-1x^2+13x+30=0
a = -1; b = 13; c = +30;
Δ = b2-4ac
Δ = 132-4·(-1)·30
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*-1}=\frac{-30}{-2} =+15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*-1}=\frac{4}{-2} =-2 $

See similar equations:

| 8y+2=90 | | 5x2=6x-4 | | 9x+27=(x²-6x)+(2x-3) | | 2a^=a+1 | | X+1=1.5x-1.5 | | X-1=1.5x-1.5 | | 15+(10x+7)=180 | | 3(3+4m)-6=48 | | u^-7u=-10 | | 6x+20=(x+40)+(4x-5) | | 8t^+15t+15=0 | | 2c÷10=24 | | 4.5(5.7r-2.8)=62.4 | | y^-42-y=0 | | 6x+2=(3x+15)+(2x-1) | | -25b^=0 | | (3y+2)+(11y+32)=180 | | -7=5b-2 | | -3(2n+1)=½(n-4) | | 6f+15=-3 | | 2x-6=x2 | | F(x)=1/3(4-256) | | (12x+5)=(9x+14) | | 8+(13x-25)=180 | | (2x+94)=(8x+76) | | 2^(x-3)=4 | | (6y+14)=(11y-26) | | 3^x+1=243 | | 2/5(x+5/3)=-25/15 | | 16+2x=9x+1 | | 180-(11x-9)=180-(7x+9) | | 2(x+7)+7=4(x+5)+9 |

Equations solver categories